Derivation of the equations for the X-ray transform

The γ-radiation is attenuated exponentially along its passage through the material, because of scattering and absorption interactions with the atoms in the material:

$$
\begin{equation*}
I=I_{0} e^{-\int_{0}^{t} f(t) d t} \tag{1}
\end{equation*}
$$

Here t indicates the thickness of the attenuating material that has been penetrated and I_{0} is the incident radiation intensity. The attenuation properties of the material are described by the product $f(t)=\mu(t) \rho(t)$, where $\mu(t)$ is the mass-attenuation coefficient $\left(m^{2} / \mathrm{kg}\right)$ and $\rho(\mathrm{t})$ is the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

The fan beam projections $g(\sigma, \beta)$ of an object $f(x, y)$ are line integrals obtained by the X-ray transform:

$$
\begin{align*}
& \mathrm{g}(\sigma, \beta)=\iint \mathrm{f}(\mathrm{x}, \mathrm{y}) \delta[\mathrm{D} \sin \sigma-\mathrm{x} \cos (\sigma+\beta)-\mathrm{y} \sin (\sigma+\beta)] \mathrm{dxdy} \tag{2}\\
& =\int_{\mathrm{t}_{\min }(\sigma, \beta)}^{\mathrm{t}_{\max }(\sigma, \beta)} \mathrm{f}[-\mathrm{D} \sin \beta+\mathrm{t} \sin (\sigma+\beta), \mathrm{D} \cos \beta-\mathrm{t} \cos (\sigma+\beta)] \mathrm{dt} \tag{3}
\end{align*}
$$

where the notation is illustrated in Fig. 1. Each line integral, $g(\sigma, \beta)$, is defined by the view angle of the projection, $\beta \in[0,2 \pi]$, which expresses the location of the x-ray source, and the fan angle, $\sigma \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, which selects a particular ray in the projection. The radius of motion of the x-ray source is D .

FIG. 1
The geometry of the X-ray transform.
In the backprojection-of-filtered-projections reconstruction algorithm, the image $f(x, y)$ is obtained from the integral:

$$
\begin{equation*}
\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{1}{2} \int_{0}^{2 \pi} \frac{\tilde{g}(\sigma, \beta)_{\sigma=\sigma^{\prime}(\mathrm{x}, \mathrm{y}, \beta)}}{\mathrm{L}^{2}(\mathrm{x}, \mathrm{y}, \beta)} \mathrm{d} \beta \tag{4}
\end{equation*}
$$

The integral over β is known as the backprojection and $\tilde{g}(\sigma, \beta)$ are the filtered projections given by:

$$
\begin{aligned}
\tilde{\mathrm{g}}\left(\sigma^{\prime}, \beta\right) & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~g}(\sigma, \beta) \mathrm{h}\left(\sin \left(\sigma^{\prime}-\sigma\right)\right) D \cos \sigma \mathrm{~d} \sigma \\
\tilde{\mathrm{~g}}\left(\sigma^{\prime}, \beta\right) & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~g}(\sigma, \beta) \mathrm{h}\left(\sin \left(\sigma^{\prime}-\sigma\right)\right) D \cos \sigma \mathrm{~d} \sigma
\end{aligned}
$$

where:

$$
\begin{aligned}
h\left(\sin \left(\sigma^{\prime}-\sigma\right)\right) & =\int_{-\infty}^{\infty}\left|\omega_{\ell}\right| \mathrm{e}^{-\mathrm{i} \omega_{\ell} \sin \left(\sigma^{\prime}-\sigma\right)} \mathrm{d} \omega_{\ell} \\
& =\left(\frac{\sigma^{\prime}-\sigma}{\sin \left(\sigma^{\prime}-\sigma\right)}\right)^{2} \int_{-\infty}^{\infty}\left|\omega_{\sigma}\right| \mathrm{e}^{-\omega_{\sigma}\left(\sigma^{\prime}-\sigma\right)} \mathrm{d} \omega_{\sigma}=\left(\frac{\sigma^{\prime}-\sigma}{\sin \left(\sigma^{\prime}-\sigma\right)}\right)^{2} \mathrm{~h}\left(\sigma^{\prime}-\sigma\right)
\end{aligned}
$$

and $\sigma^{\prime}(\mathrm{x}, \mathrm{y}, \beta)$ and $\mathrm{L}(\mathrm{x}, \mathrm{y}, \beta)$ describe the fan angle of the ray traversing through the point (x, y), and the distance from the x -ray source to the point (x, y) in the image is:

$$
\begin{align*}
& \sigma^{\prime}(x, y, \beta)=\arctan \left[\frac{x \cos \beta+y \sin \beta}{D+x \sin \beta-y \cos \beta}\right] \tag{5}\\
& L(x, y, \beta)=\sqrt{(x \cos \beta+y \sin \beta)^{2}+(D+x \sin \beta-y \cos \beta)^{2}} \tag{6}
\end{align*}
$$

Suggested reading:

S.R. Deans, The Radon Transform and Some of Its Applications, John Wiley \& Sons, Inc. (1983).
W. Swindell and S. Webb, "X-Ray Transmission Computed Tomography", The Physics of Medical Imaging, edited by S. Webb, IOP Publishing Ltd (1988).
H. J. Dobbs and S. Webb, "Clinical Applications of X-ray Computed Tomography in Radiotherapy Planning", The Physics of Medical Imaging, edited by S. Webb, IOP Publishing Ltd (1988).
P.J.M. Monteiro, C.Y.Pichot and K. Belkebir, Computer Tomography of Reinforced Concrete, Chapter 12, Materials Science of Concrete, American Ceramics Society (1998).

