
Algorithms for Microwave Imaging1 
Consider a perfectly conducting cylindrical object embedded in a dissipative 

medium, D, (permittivity ε and conductivity σ) and illuminated by a harmonic incident 
field, {Ei, Hi},  with angle of incidence, θ,  with respect to y-axis (Fig. 1). The time-
factor is given by e-jωt . The incident electric field is linearly polarized along the z-axis. 
The scattered field, Es, has only a z component and is generated by an electric surface 
current, Js, on the object . 
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Figure 1 - 2D geometry of the problem. 

 
The scattered field satisfies the Helmholtz equation 
 

 ∆Es+k2Es= -iωµ0Js (1) 

with k2= ω2εµ0 

and is given through an integral representation  
 

 Es ( r) = iωµ0  ∫s
Js ( r' ) G ( r,r' ) dr' (2) 

with r=(x,y) r'=(x',y')  
and with the Green's function  
 
 G ( r,r' ) = i/4 H0

(1)(kr- r') (3) 

                                                 
1 This summary is based on P.J.M. Monteiro, C.Y.Pichot and K. Belkebir, Computer Tomography of 
Reinforced Concrete (with ),  Chapter 12,  Materials Science of Concrete,  American Ceramics Society 
(1998). 



where  H1
(0) is the Hankel function of the first kind of order zero 

 
Diffraction Tomography formulation  
The normalized surface current , K(x,y),  is given by 
 

 

K(x,y) = 
Js (x,y)

E (x,y)
i

 (4) 
with 

 
E i (x, y) = e ik (y cos θ  + x sin  θ )

 (5) 
 
The Fourier transform of the Green's function is given by 
 

 

 G(x, y; x', y') = i
2γ

 e iγy - y '  e 2iπν (x - x ') d ν
-∞

+ ∞

 (6) 
 

 γ2 = k2  - 4π2∨2  ;    Im(γ) ≥ 0  (7) 
 
Combining eqs. (2) and (7), it is possible to establish the relationship between the 1D-
Fourier transform of the backscattered field and 2D-Fourier transform of the normalized 
surface current. 
 

 

K(α, β ) = - 
2γ ei γ y

0 ( y0, ∨ )E
s

ωµ 0  (8) 

with 

 

 α(∨, θ) = ∨ - k'
2π

  sinθ  ∈ R

β(∨, θ) = - 1
2π

 (γ  + k  cosθ)  ∈ R (∨ ≤ k
2π

 )'

 (9) 
 
To obtain a usual Fourier transform for K(x,y) , α and β are restricted to their real 
parts with k'= Re(k),  making  eq (8) an approximate solution for an embedding 
dissipative medium.  
The 1D-Fourier transform of the backscattered field,  Es (x,y0),  at location y0 , is 
defined as 

 

E ( , y ∨ ) = ( 0, y ) e-2iπ ∨  dx
- ∞

+ ∞

s
0 Es x x

 (10) 



and with the 2D-Fourier transform of the normalized surface current K(x,y)  

 

K(α, β) = K(x, y) e-2iπ (αx + βy)  dx dy
- ∞

+ ∞

 (11) 
 
The equation (8) is an application of the Fourier Diffraction theorem, which is a 
generalization of the Radon Projection-slice theorem used in X-ray tomography. This 
theorem provides information on the 2D-Fourier transform of K in the Fourier space at 
temporal frequency,  ω,  on a given semicircle,  C(ω),  of radius k(ω),  whose center is 
located at -k(ω),  as shown in Fig. 2 for normal incidence. 
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Figure  2 - support of the 2D-Fourier transform of K for normal incidence (θ=0°) 
 
The quality of image reconstruction is improved by processing data obtained at different 
temporal frequencies in the range  [ωmin , ωmax] (Fig.3). 
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Figure  3 - Variation of the support of the 2D-Fourier transform of K in the frequency 
range [ωmin , ωmax] 

 
 
Suggestions for further reading: 
J.Ch.Bolomey and Ch.Pichot, “Microwave tomography: from theory to practical imaging 
systems”, Int. J. Imaging Syst.Tech., vol.2, pp. 144-156 (1990). 
Bolomey J.Ch. and Pichot Ch.  "Some applications of Diffraction Tomogaphy to 
Electromagnetics- The particular case of Microwaves" in Inverse Problems in Scattering 
and Imaging, edited by M. Bertero and E. R. Pike, Malvern Physics series, Adam Hilger, 
Bristol, pp. 319-344 (1992). 
Bolomey J.Ch., Pichot Ch. and G. Gaboriaud, "Planar microwave imaging for biomedical 
applications: Critical and prospective analysis of reconstruction algorithms",  Radio 
Science, 26 (11), pp. 541-549 (1991). 


