
Finite Elements for Crack Problems 
 The concept of finite elements was introduced in the last section for determining 
temperature distribution in mass concrete.  Next we will discuss how finite elements 
can be used to determine stress intensity factors KI and KII for complex geometries.  

As  mentioned previously,  the finite element method is a powerful tool for the 
numerical treatment of partial differential equations.  For elasticity problems with 
complex geometric boundaries it is usually impossible to find an exact solution for the 
displacements and stresses.  In order to construct an approximate solution, the domain 
under consideration is divided into subdomains called finite elements.  For every finite 
element, linearly independent basis functions similar to those used for the heat transfer 
problems can be used in order to approximate the displacement field.  Restricting our 
attention to plane problems, the nodal jth values of a finite element are usually chosen to 
be the displacement components uj and vj  (see Fig. 1). 
 

 
Figure 1 Coordinate system at the tip of the crack (From R. Piltner, Spezielle finite element 
emit Lochen, Ecken und Russen, unter analystischen Teillosungen, VDI-Verlag, Dusseldorf, 
n. 96, 1982) 
 
 The basis functions for standard displacement finite elements consist of  shape 
functions multiplied by the unknown nodal values. By coupling the finite elements, we 
“glue” the pieces of our solution together.  The unknowns in the finite element solution 
are the nodal values.  For the unknown nodal values we require that the potential 
energy of the system is minimized, thereby setting up the system of equations for the 
unknowns. 
 The stresses in standard displacement elements are finite. Therefore, standard 
displacement elements are not appropriate to approximate the stress singularities at the 



crack tip.  For crack problems, special finite elements are needed that include crack tip 
singularities in the trial functions. In addition, we would like to couple crack elements 
with standard displacement elements for which polynomials are used as approximation 
functions. 
 In order to couple crack elements with standard displacement elements, it is 
critical that the displacements along the edges of adjacent elements are compatible. The 
procedure of coupling a crack element with a standard displacement element is 
illustrated in Fig. 2. 
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 The crack element requires displacement trial functions with the following 
properties: 
 The linearly independent trial functions satisfy the equilibrium equations; 
 The trial functions satisfy the stress free boundary conditions on the crack surface; 

and 
 The trial functions for the displacements contain terms are proportional to  r  so that 

the associated stresses are proportional to  1 r . 
 
 These conditions ensure that the correct form of the singular stress function 
terms will be used in the finite element approach. From the finite element analysis we 
get the coefficients of the singular stress functions for the crack tip . Apart from a factor , 
the coefficients of the singular stress functions are the stress intensity factors. 



 Two questions remain:   (i) How do we systematically construct linearly 
independent trial functions for the displacements and stresses with the properties listed 
above; (ii)  How can we compute a stiffness matrix for a crack element when the stresses 
are singular at one point. 
 For the construction of linearly independent trial functions, a representation of 
the displacements and stresses in terms of arbitrary functions is helpful.  Using two 
complex functions, φ(z) and Ψ(z), the displacements and stresses can be written in the 
form1 : 

  2 µ u = Re κ φ z( ) − z φ' z( ) − Ψ z( )[ ]  

  2 µ v = Im κ φ z( ) − z φ' z( ) − Ψ z( )[ ]  

  σx = Re 2 φ' z( ) − z φ ' ' z( ) − Ψ' z( )[ ]  (1) 

  σy = Re 2 φ ' z( ) + z φ ' ' z( ) + Ψ' z( )[ ]   

 τxy = Im z φ' ' z( ) + Ψ' z( )[ ]  

where z=x + iy ,  φ’ denotes differentiation with respect to z, 2 µ =  E/ (1 + ν) and κ = (3 - 
4 ν) for plane strain and  κ = (3 - ν)/(1 + ν) for plane stress. The advantage of using Eq. 
(1) is that for any choice of functions φ and Ψ, the equilibrium equations are 
automatically satisfied.  For our crack element we need functions φ and Ψ, which 
ensures the satisfaction of the stress-free boundary conditions on the crack surfaces. 
These functions may be represented in the form of a power series as: 
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where  a j = α j + i β j  and  ς = z  . 

                                                 
1 N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, 
Holland, 1953. 



 Substituting Eqs. (2, 3) into (1) gives us the linearly independent, real trial 
functions for our crack element. Note that the terms with the index j=1 give the singular 
stress terms for Mode I and Mode II. For example, for σx we obtain the singular terms in 

the form: 
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 Stress intensity factors KI and KII can be calculated from 

  K I = 2 π α1  (5) 

  K II = − 2 π β1 (6) 

Collecting unknown coefficients αj and βj into a vector c, the displacements for our 

crack element can be written in matrix notation as 

 u = U c + up = uh + up  (7) 

where up is a particular solution involving no unknown coefficients.  

If we want to take nonhomogeneous stress boundary conditions on a crack 
surface into account (for example, constant pressure on the crack), a particular solution 
can be used. Only the homogeneous solution uh involves unknown coefficients.  Since 

the unknowns in vector c are not associated with finite element nodal values, it is 
necessary  to relate in some manner vector c to the vector of nodal displacements q; 
vector q contains the nodal values uj, vj of the chosen element nodes.  In Fig. 2, a linear 

variation of the boundary displacements, ũ ṽ[ ]T = ũ  ,  is assumed between nodes i and j. 
If we want to couple the crack element with linear standard displacement elements, ũ, ṽ   
are chosen linear between two nodes.  If the crack element is to be coupled with 
quadratic standard elements, a quadratic variation of the boundary displacement ũ  of 
the crack element is chosen. 
 The first step for evaluating a crack element stiffness matrix, vector c of the 
displacement field u for the domain Vi of the crack elements is calculated such that an 
optimal agreement between u and ũ  is achieved along the boundary of the crack 
element. This gives us the following relationship: 

 c = G q + g  (8) 



so that the unknowns c can be eliminated, and only the nodal displacements q will 
remain as unknowns of the crack element. 

To evaluate the crack element stiffness matrix, the following displacement 
functional is used: 
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where 
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and Vi denotes the domain of the finite element, Si is the boundary of the element, and 

T are the tractions along the element boundary. Using the decomposition of the 
displacements and tractions in the form u = uh + up and T = Th + Tp, we can simplify 

the variational formulation. Since the displacement field for the crack element is 
constructed such that the governing partial differential equations (Navier-equation in 
matrix notation): 

 D
T E D u = − f  in V                                                                            (11) 

are satisfied a priori, Eq. (10), can be simplified to an expression with boundary 
integrals: 
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 Using the stiffness matrix of a crack element can be obtained by evaluations of 
the boundary integrals along the element boundary2, 3 .It is important that the boundary 
conditions on the crack surface are satisfied a priori so that all integrals along the crack 
surface vanish. Therefore, we do not need to evaluate stresses at the crack tip during the 
calculations of the stiffness matrix, and although the stress singularities are included in 
the model, the evaluation of the stiffness coefficients will not be “polluted” from the 
presence of the singularities. 
 

                                                 
2 R. Piltner, Int. J. Numer. Methods Eng., 21, 1471, 1985 
3 R. Piltner, in "Local Effects in the Analysis of Structures," Elsevier, Amsterdam, 299, 1985. 


